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Oscillations of tide and surge in an estuary of 
finite length 

By J. PROUDMAN 
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SUMMARY 
This paper concerns a narrow basin of uniform cross-section 

open to the sea at one end and closed at the other. An incident long 
wave of prescribed general form is supposed to enter from the sea 
and to represent the combination of tide and surge as generated in 
the sea. The solution of the linear terms of the equations of 
continuity and motion gives the reflection of this wave at the head 
of the estuary. This paper gives the next approximation when the 
non-linear terms are retained, the second-order motion being 
made determinate by the condition that, at the mouth, it reduces 
to a progression towards the sea. 

The chief results relate to the surface elevation at the head of 
the estuary. When the first order elevation there increases steadily 
to a maximum, the effect of the ‘shallow water terms’ is to make 
high water higher and earlier, while the effect of the ‘frictional 
term ’ is to make high water lower and later. For a short estuary, 
the interaction of the tide on a surge, due to a given sequence of 
meteorological conditions over the sea, is to make it higher when 
its maximum occurs at the time of tidal high water than when its 
maximum occurs at the time of tidal low water. This is directly 
opposite to the corresponding result when the estuary is of 
infinite length. 

1.  INTRODUCTION 
In  two papers (Proudman 1955 a, b) I have discussed the dynamics of a 

progressive wave of tide and surge in an estuary, and particularly the 
interaction between the tide and the surge. For equal sequences of 
meteorological conditions over the sea, I showed that the apparent height 
of a surge whose maximum occurs near to the time of tidal high water 
is less than that of a surge at the same place whose maximum occurs near 
to the time of tidal low water. But the tides of the Thames Estuary, for 
example, constitute a standing oscillation much more nearly than they 
constitute a progressive wave. 

In the first of the papers, I also gave an approximate solution of the 
differential equations relating to an estuary with a barrier, but without 
using end-conditions which would completely determine the motion. In 
1956 Doodson considered the problem presented by a gulf, and gave 
numerical solutions for the cases of a tide prescribed at the mouth and of 
a surge prescribed at the head. Because of reflection from the head, it is 
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inappropriate to prescribe a surge at the mouth of an estuary. Also, any 
attempt to deal with discontinuities of basin at the mouth, involves 
reflections from the mouth, both on the seaward side and on the estuarial 
side. 

In  this paper, a prescribed incident wave is taken to progress up the 
estuary, and the remaining part of the motion is taken to reduce, at the 
mouth, to a wave travelling down the estuary. The incident wave is taken 
to represent the combined tide and surge which are generated in the sea, 
and the remainder of the motion is taken to represent the origin of the 
wave which, in the open sea, will diverge away from the mouth of the 
estuary. 

In order to avoid a greater mathematical complication, I suppose the 
cross-section of the estuary to be uniform. I follow the same mathematical 
method as in my earlier paper, except that I now use the differential 
equation for the current, whereas previously I used that for the elevation 
of the water-surface. Because of the more precise end-conditions of the 
present paper, the results are more definite than those of that part of the 
earlier paper which relates to an estuary with a barrier. 

It appears that the surface-elevation at the head of the estuary depends 
on the primary elevation there at the same time and for a previous interval 
during which a progressive wave could travel twice the length of the estuary. 
When, during this interval, the primary wave increases steadily to a 
maximum, the tendency of the shallow water terms of the differential 
equations is to make high water higher and earlier, while the tendency of 
the frictional term is to make high water lower and later. For a short 
estuary, the current in the estuary, and the time and height of high water 
at its head, are approximately independent of friction ; while the interaction 
of the tide on a surge, due to a given sequence of meteorological conditions 
over the sea, is to make it higher when its maximum occurs at the time of 
tidal high water than when its maximum occurs at the time of tidal low 
water. This result is direetly opposite to the corresponding result for a 
progressive wave. 

2. NOTATION AND DIFFERENTIAL EQUATIONS 

Denote by : 
g the acceleration of gravity, 
h the undisturbed depth of the water, supposed uniform, 
a the length of the estuary, 
x distance down the estuary, x = 0 being at the head and x = a at 

t the time, 
5 the elevation of the water-surface, 
u the current down the estuary, 
k a numerical coefficient of friction, which will be taken as 0.0025 ; 

the mouth, 

and write c = (gh)l’Z. 
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X X f = t + -  q = t - -  Take also 
C ’  C’ 

( 3 )  
a a a  a a a  
Z=z aq ax a t  aT 

+-,  c - = - - - - ,  and 

so that 
(4) 

Accents will be used to denote derivatives of functions with respect 
t o  their arguments. Suffixes 1 and 2 will be used respectively to denote 
terms which are of the first and second orders in the ratio of the primary 
surface-elevation to the depth of water. 

The  equation of continuity is 

and the equation of motion is 

au au a t  k 
+a- +g-  = - - iuiu 

ax ax h ‘  

while u = 0 where x = 0. 
The  product terms on the left-hand sides of (S), (6) will be called the 

shallow water terms ’ of these equations. , 

3. GENERAL FORM OF SOLUTION 

The elimination of i from the first-order terms of (5) and (6) gives 

a t 2  ax2 - g s  (c.1- 3 axat - h IuIu, 
- a Z u  --2- a Z u  - a 2  1 a y U 2 )  K a 

(7) 

and the general solution of the first-order part of this equation, which 
makes u1 = 0 where x = 0, is 

ul/c  = - F ( t  + z) + F ( t  - :), 
where F ( )  denotes any function which is physically interpretable. 
follows from the first-order part of (5) that 

It 

so that 
(9) 

no term independent of t being required. 
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The terms of (8), (9) in F ( t + x / c )  are taken to represent the prescribed 
The solution of the fundamental equations, as far as the  incident wave. 

second order, will be of the form 

g = F  ( t + -  :) + F  ( t - -  :) + p  1;2 

- =  U - F ( t + ; ) + F ( t - q ) + :  
C 

The terms of (lo), (11) in F(t-x/c) represent a wave travelling down the 
estuary, and, to satisfy the condition prescribed in 81, so must the terms 
in c2, u2 at x = a. The condition for this is 

where x = a, and this will be used as the determining condition in this paper. 

4. SECOND ORDER TERMS 
For the second approximation, the equations ( 5 ) ,  (7) lead to 

respectively, and the transformation (3), (4) applied to (14) gives 

Now (9), (8) may be written respectively as 
Y 

U 

c = - F ( t )  + F(17), 
and substitution from these into (15) gives 

4u& = ++*+x+ Y,  
where 
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One integration of and X ,  Y are arbitrary functions of 5, 77 respectively. 
each of these equations gives 

!2 = - &-3-“t)I’ + F’( t )F(d  + ; / F ( t )  - F(7))“(t) - F(d1, 

2 = 8[F2(rl)l’ - F ’ ( d F ( t )  + ; IW) - F(rl)IEF(t) - F(77)1, 

277 

a* 

no additional arbitrary functions being required. 
give 

Further integrations 

4 = %(E-r)[F2(t)1’+ F’(0 1’1 F(0) do+ 

* = w-77”2(77)1r - F’(4 I F(0) dot- 

e 

+ ; I* I F ( t )  - F(6)I [F(O - F(0)l d 4  (20) 

+ ; J: I F(0) - F(77)l[F(4 - F(7dId0, (21) 

d 

€ 

the additive functions of t and 7 respectively in these integrals being so 
chosen that 4 = $J = 0 where 5-q = 0. 

From (19), (20), (21), and on taking 

x = -4f(E), y = 4f(77), 
it follows that 

-f(t) +m. (22) 

I n  (22), u2 = 0 where E-q = 0, whatever the functionf( ) may be. 

the equations (l), (2), gives 
Transformation of (22) back to the independent variables x, t ,  by using 

-f( t + ;) +f( t ; ;) ; (23) 
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and then substitution from (8), (9), (23) into (13) gives 

- 3 4 c  '{[ F2 ( t + ;  x ) ] "  - [ P ( t - 9 ] " } +  

+ : { F ( t + T ) + F ( t - ; ) } { F ( t + ; ) + F ( t -  4 ;)}+ 

+ 1 4 h f+z'c t - a i c a x  ?{ IF( t + ;) - F(B)l[ F(  t + :) - F(B)] - 

since the terms due to differentiation with respect to the upper and lower 
bounds of the integrals in (23) balance. Integration of (24) gives 

~ = ~ { F ( t + 5 ) + F ( t - ~ ) ) 2  h - i : { [ F 2 ( t + ; ) ] '  - [ F 2 ( t - : ) ] ' } +  

f -  '{ F' ( t + -  ;) - F ' t - -  ( :)} f."'F(B) dB+ 
4 t -x lc  

+ 1 4 h " r+z'c{ t -x l e  I F (  t + ;) - F(e)l[ F( t + 5) - F(B)] + 

+ IF(B) - F( t  - :)I[ F(B) - F ( t  - T ) ] }  dB+ 

Substitution from (23), (25) into the condition (12) gives 

2 4 . 3  - i { ~ ( t + : ) + ~ ( t - : ) ) Z +  

+F'( t+ :){?F(t+ 5 ) -  f+"'F(B)d6}- t -ah  

- 2 kc -K f+@ &ale I F (  t + 5)  - qq1[ F( t + :) - F(B)] de 

for all values of t ,  so that 

- 4 f [F( t ) -F(B) / [F( t ) -  F(B)] do. (26) 
' kc 

t-2aic 
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Substitution from (26) into (25) gives 

3 a + x  

F(0) d8 

“ f-z’c 

- 5 x t+x /e2u lc  

+ - -  kc f+”‘ 
1F(t + ;) - F( 19) I[ F(  t + 2) - F(B)] dB + 

I q e )  - F( t - :)I[ F(B)  - F( t - 31 do, (27) 4 h t-x/c-zu/c 

and a similar formula may be obtained for u2/c. 

necessary for /{,I to be small compared with the maximum value of 
For the second approximation to be a valid approximation, it is 

5. ELEVATION AT HEAD OF ESTUARY 

At the head of the estuary, where x = 0, it follows from (lo), (27) that 

5 - = 2F( t )  + $F2(t) - $F2(t - 2a/c) - +F(t)F(t - 2a/c) + 
h 

kc f IF(t)-F(B)I[F(t)-F(O)] do. (28) 
- 2 t-za/c 

It is then seen that the elevation of the water-surface at the head of the 
estuary depends upon the first-order elevation there at the same time and 
for a previous interval during which a first-order progressive waye could 
travel twice the length of the estuary. 

When the first-order elevation at the head of the estuary has a positive 
maximum at t = 0, then F‘(0) = 0 and F”(0) is negative. The formula (28) 
then gives, for that time, 

Y 

4 - = 2F(O) + gF2(0) - iF2(  - 2a/c) - &F(O)F( - 2 4 c )  - 
I? 

0 

- [F(O)-F(O)l[F(O)-F(o)] do, (29) 
2 h -2aic 

- - +F( - 2 a / c ) { ~ ( 0 )  + F( - 2a/c)) + xz- 

F.M. 

1 kc 
2 h  

+ - - IF(O)-F(-2a/c)l{F(O)-F(-2a/c)}, (30) 

2 c  
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and (30) is of the second order in F. 
Now 

to the first order in t ,  and, as high water occurs when a</at = 0, it follows 
from (30) that the time of high water is given, to the first order in F, by 

3 a  0 
t = - - - F(0) + f F’( 2a’c) {F(O) + F( - 2a/c)} + f F(8) d8 - 

2 c  4 F (0) 4 -2n/c 

I zc  IF(0)- F(-2a/c)l(F(O)- F(-2a/c)). (31) -7T‘) 
Also, 

so that, to the second order in F ,  the height of high water is given by (29). 
Suppose now that 

0 < F(-2a/c)  < F(8) < F(O), for -2a/c < 0 < 0, 

so that F’( - 2a/c) is positive. Then from (29), (31) it can be shown that 
the tendency of the shallow water terms of the fundamental equations is 
to make high water higher and earlier, and that the tendency of the frictional 
term is to make high water lower and later. 

When there is no surge and the first-order tide is harmonic of amplitude 
2hA and period 2r /a  so that 

F(t )  = A cos at, 

then the formulae (29), (31) for the height and time of high water at the 
head of the estuary become respectively 

5 1 2aa 1 4aa 8 - 290s- - -cos- - 
5 = 2A+A2{ 

c 8 c  

2oa 
3-4cos- +cos- 

C C 

In  the tidal example taken by Doodson, h = 128 ft, 2r /a  = 12 hours, 
aalc = 2n-15, 2hA = 5 ft, so that A = 0.0195, kclha = 6.9, $Akc/ha = 0.034. 
These figures indicate that the method of the present paper should give 
an approximation to the motion. But for an estuary, the depths are smaller, 
so that the values of kc/ho are larger, and the values of A may be much 
larger. In these circumstances the approximation will only be valid if uulc 
be small. 

6. SHORT ESTUARY 

Now suppose that, during the time taken by a progressive wave to travel 
the length of the estuary, the elevation at  any one place changes by only a 
small fraction of its maximum value. Then a F / c  will be small compared 
with the maximum value of F. 
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On expanding the second-order terms in ascending powers of x/c as 
far as 9/19, it follows that 

t+z/c 

t - ZIC 
F(8) d8 = (F(t)+(8-t)F’(t)+&(6-t)2F”(t)} d8 

X 1 x 3  
= 2- F(t)+ ;j 2 F”(t), 

C 

and similarly it may be shown that 
t 2a 2a2 4 a? I F(8) dB = - F(t)  - - F’(t) + - - F”(t). 
t-2alc c C2 3 c y  

Also 
t+x/c 

t - sic 
(F( t+x/c) -  F(B)[[F(t+x/c)-  F(O)] d6’ 

= IF‘( t )JF(t)  f + r ‘ c ( t + x / ~ - - B ) 2  dB 
t - x / c  

8 x3 
3 c3 

= - - IF’(t)jF’(t), 

and similarly it may be shown that 
t + X k  8 x3 

IF(6)-F(t-x/c)J[F(B)-F(t-x/c)]  d8 = - - IF(t)lF’(t), 
t - x/c 3 c 3  

1 ’ 8 a3 
j IW- F ( W F ( t ) -  F(4l dB = ‘j 2 IF‘(t)/F‘(t). 

t-2alc 

It then follows, from (25), (23), (26) respectively, and on omitting the 
argument t of F and f, that 

(32) 
52 X2 4 kx3 X2 

= p- 7 i (FF“+3F2)+ 3 z2 lF’ /F+2f+ -$“, 
x 3  x 1 x 3  

f IN, - = 2 - Fp + >( F p  + “j F p  - 2 -y - - - 
l3 ) c 3 c 3 -  

a:! x 
C c 

2a a2 2 a3 2 ka3 
C C2 3 c 3  3 hc 

f =  -*F’+-FF’--FFF”+ -((FF”+FF”)- - --,JF’JF’. (34) 

(33 )  

From (lo), (32), (33), (34), it then follows that 

;= F ( t + ~ ) + F ( t - ~ ) + ~ F P ’ - - F F ”  2a2 - 2x2 - (FF”+2F2)+ 
C2 c2 

4 a3 2ax2 
3 c  C 3  

+ - (FF” + F F )  + - (FF” + 3F’F”) - 

4 k  
3 he2 - - - ( a 3 -  x 3 )IFIF, (35) 

4ax 
C2 

F F -  - ( F F ” + P 2 ) +  
U 

C 

2a2x 4 x3 + --p-(FF’”+F’F”)+ j ,(FF“+4F’F“), C (36) 

the argument of F being t ,  except where otherwise shown. 

2 c 2  
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It will be seen that, to the order x3/c3, the current is independent of 
friction. 

When F(0)  > 0, F(0) = 0, F(0) < 0, 

the formulae (29), (31), for the approximate height and time of high water 
at the head of the estuary, become 

h (37) 

a2 F(o) { F"(0) - 
2a 

t = - - F ( O ) + -  - 
C c2 F ( 0 )  

Both these results are independent of friction. 

A, a being constants, the formulae (35), (36) become 

When again F(t) = A cos at 

U2 + - ( +a3 + ax2) sin 2at + (a2 - x2)  
C c3 1 C 

a 2  4 ku2 + ,(a2+3x2) cos 2ut+ - 7(a3-x3)j~inutlsinut 
3 hc 

18 ax 
c C 
- = 2Asin-sinot+ 

4u2ux + ~ 2 {  [ - 2ax C + "( c3 a2x + 3 x3))lsin 2ut + - c2 

respectively. 
water at the head of the estuary, become 

The formulae (37), (38), for the height and time of high 

h 

t =  - - A  2a ( I - -  ; - y>, 
C 

respectively. 
The validity of the expansions in x/c requires that uajc < 1. For the 

above formulae to give a valid approximation to a solution of the fundamental 
equations, it is necessary for (au/c)A, (ka2u3/hc2)A to be small. 

As an example, take h = 40 f t  and a semi-diurnal tide. Then 
c = 24.5 miles per hour, a = 2,112 hours-l, so that c /o  = 47 miles. With 
a = 20 miles and A = Q, this gives 

uu ku2a3 
- A  = 0.14, -p- A = 0.39. 
c 

7. SEPARATION OF TIDE AND SURGE 

Take F(t)  = T(t)  + S(t), (39) 
where T (  ) denotes a tide and S( ) a surge. Equal sequences of meteorological 
conditions over the sea may be regarded as giving rise to equal functions S(t). 
Since the timing of the meteorological conditions which generate surges 
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is independent of the timing of the astronomical forces which generate the 
tides, the frequency-distribution of the first-order surges S will be 
independent of the phases of the first order tides T. 

Substitution from (39) into (35) with x = 0, gives for the height of the 
combination of tide and surge at the head of the estuary 

5 4a 2a2 
= 2(T+S)+ T ( T + S ) ( T ' + S ' ) -  F ( T + S ) ( T " + S " ) +  

4 a3 + ,jj 2 (( T + S)( T"' + 5'"') + (T' + S')( T" + S")) - 

4 ka3 
3 hc2 - - -\T'+S'I(T'+S') ,  (40) 

the argument of T and S being t .  
The predicted tide would be given by 

I 4a 2a2 4 a3 4 ka3 
la C C2 3 c3 3 hc 
- = 2 T + - T T - - T T " + - - ( T T " + T T ) - -  +T'IT', (41)' 

so that the apparent surge is given by subtracting (41) from (40). 
formula for the apparent surge is thus 

The 

5 2S+-SS'- 4a 2a2 -ss+ - 4 -(SS"+S'S")+ a3 4a - (TS '+T'S) -  
x =  C C2 3 c3 c 

2a2 4 a3 
C2 3 c3 

- - ( T S " + T S ) +  - -(TS"+T"S+T'S"+T"S'- 

4 ka3 
3 hc2 - - -{(IT'+S'I(T'+S')-ITIT'}. (42) 

When .the first-order surge has either a maximum or a minimum so. 
that S' = 0, the formula-(42) reduces to 

2a2 4 a3 
C2 c3 

- - TS" + -j - (TS" + T'S"), (43)) 

and this is free from frictional influence. 
When the terms in a3/c3 are negligible, and, at the same time, the 

first-order tide is either at high water or low water, so that T' = 0, the 
formula (43), for the apparent surge at the head of the estuary, reduces to 

Now suppose that 
s > 0, S' < 0, 

so that the first-order surge has a positive maximum. When the first-order 
tide is at high water, 

T =  A, T = -u2A, 
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hA denoting the amplitude of the tide and 2r/a its period, and the apparent 
surge (44) is given by 

g t: = 2s ( : : ) y  1 -  -S"  + -A(a2S-S"). 

When the first-order tide is at low water, 

T = -A,  T = o'A, 

.and the apparent surge (44) is given by 

'The excess of (45) over (46) is 
4a2 
C2 
- A(a2S- s.), 

(45) 

(47) 

.and this is positive. 
It is thus seen that, at the head of a very short estuary, the effect of the 

interaction of the tide on the surge is to make the apparent surge higher 
when its maximum occurs at the time of tidal high water than when its 
maximum occurs at the time of tidal low water. This result, which is due 
to the shallow water terms of the differential equations, is directly opposite 
to the corresponding result for a progressive wave. That result, in the case 
of an estuary of uniform cross-section, is due to the frictional term. 

To examine the order of magnitude of the difference (47), take the 
particular case in which, when the first-order surge is at its maximum, 
S" = -0%'. The difference in the heights of the apparent surges is then 
equal to the height of the first-order surge multiplied by (8u2a2/c2)A. With 
the figures at the end of $6, this factor is 0.47. 

REFERENCES 
DOODSON, A. T. 1956 Proc. Roy. SOC. A, 237, 325. 
PROUDMAN, J. 1955a PYOC. Roy. SOC. A, 231, 8 .  
PROUDMAN, J. 1955 b Proc. Roy SOC. A, 233, 407. 


